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Numerical determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model

S. Lübeck* and K. D. Usadel†

Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, Lotharstrasse 1, 47048 Duisburg, Germany
~Received 17 December 1996!

We consider the Bak-Tang-Wiesenfeld sandpile model on a two-dimensional square lattice of lattice sizes up
to L54096. A detailed analysis of the probability distribution of the size, area, duration, and radius of the
avalanches will be given. To increase the accuracy of the determination of the avalanche exponents we
introduce a new method for analyzing the data which reduces the finite-size effects of the measurements. The
exponents of the avalanche distributions differ slightly from previous measurements and estimates obtained
from a renormalization group approach.@S1063-651X~97!09604-9#

PACS number~s!: 05.40.1j
t
n
ic
law
s’
he
la

th
x
x

,

v
io

e
il-
he

th
a
e

to
hu
h
a
te

tio
d

a

by

ring

und-
.
.

f

ver-
se
r-
ing
as

s
ct
r
ing
tes,
e
able

al
ns
nts
I. INTRODUCTION

Bak, Tang, and Wiesenfeld~BTW! @1# introduced the
concept of self-organized criticality~SOC! and realized it
with the so-called ‘‘sandpile model’’~BTW model!. The
steady state dynamics of the system is characterized by
probability distributions for the occurrence of relaxatio
clusters of a certain size, area, duration, etc. In the crit
steady state these probability distributions exhibit power-
behavior. Using the concept of ‘‘Abelian sandpile model
@2# it is possible to calculate the static properties of t
model exactly, e.g., the height probabilities, height corre
tions, number of steady state configurations, etc.@2–5#.
However, the dynamical properties of the model, i.e.,
exponents of the probability distributions, are not known e
actly. Numerical simulations yield different values of the e
ponents depending on the considered system size and
used method of analyzing the data~see, for instance
@6–10#!. Recently Pietroneroet al. @11# introduced a renor-
malization scheme which allowed them to estimate the a
lanche exponents. An improvement of this renormalizat
scheme was given by Ivashkevich@12# who obtained com-
parable results.

We investigate the original Bak-Tang-Wiesenfeld mod
on large lattice sizes (L<4096) and measured the probab
ity distributions. Since the numerical investigations of t
BTW model by Manna@6# it is known that the obtained
values of the exponents are affected by the finite size of
system. These finite-size effects have to be taken into
count in order to get the ‘‘real’’ exponents. This has be
done by extrapolation (L→`) from data obtained for differ-
entL @6#. We could improve this method and are now able
measure the exponents of the infinite system directly, t
avoiding any extrapolation. In this way the accuracy of t
obtained exponents is increased significantly. We also
dress the question whether the BTW model and the rela
sandpile models of Zhang@13# and Manna@14# belong to the
same universality class. Finally, we discuss the assump
that the avalanche propagation can be described as a ran
walk.
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551063-651X/97/55~4!/4095~5!/$10.00
he

al

’

-

e
-
-
the

a-
n

l

e
c-
n

s
e
d-
d

n
om

II. MODEL

We consider the two-dimensional BTW model on
square lattice of sizeL3L in which integer variables
hi , j>0 represent local heights. One perturbs the system
adding particles at a randomly chosen sitehi , j according to

hi , j°hi , j11 with random ~ i , j !. ~1!

A site is called unstable if the corresponding heighthi , j ex-
ceeds a critical valuehc , i.e., if hi , j>hc . Without loss of
generality, we takehc54 throughout this work. An unstable
site relaxes, its value is decreased by 4, and the neighbo
sites are increased by one unit, i.e.,

hi , j→hi , j2 4, ~2!

hi61,j61→hi61,j611 1, ~3!

where the update is done in parallel. We assume open bo
ary conditions with heights at the boundary fixed to zero

System sizes fromL564 to L54096 are investigated
Starting with a lattice of randomly distributed heightsh
P$0,1,2,3% the system is perturbed according to Eq.~1! and
Dhar’s ‘‘burning algorithm’’ is applied in order to check i
the system has reached the critical steady state@2#. Then we
start the actual measurements. All measurements are a
aged over at least 106 nonzero avalanches except of the ca
L54096 where only 53105 measurements have been pe
formed. We studied four different properties characteriz
an avalanche. In the following we use the same notation
Majumdar and Dhar@7#. The total number of toppling event
is called the sizes of an avalanche. The number of distin
toppled lattice sites is denoted bysd . Because a particula
lattice site may topple several times, the number of toppl
events exceeds the number of distinct toppled lattice si
i.e., s>sd . The durationt of an avalanche is equal to th
number of update sweeps needed until all sites are st
again. The linear size of an avalancher is measured via the
radius of gyration of the avalanche cluster. In the critic
steady state the corresponding probability distributio
should obey power-law behavior characterized by expone
ts , td , t t , andt r according to

Ps~s!;s2ts, ~4!
4095 © 1997 The American Physical Society
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4096 55S. LÜBECK AND K. D. USADEL
Pd~sd!;sd
2td, ~5!

Pt~ t !;t2t t, ~6!

Pr~r !;r2tr. ~7!

III. SIMULATIONS AND RESULTS

Figure 1 displays the obtained results for the distribut
Ps(s) for different system sizes. A power-law fit to th
straight portion of these curves yields the exponentsts(L).
Figure 2 shows a plot of the exponentsts(L) vs 1/lnL. It is
seen that forL>128 the exponents obey the finite-size b
havior

ts~L !5ts,`2
const

lnL
, ~8!

as suggested already by Manna@6#. The extrapolation to
L→` yields the value of the exponentts,`51.247. The
probability distributionsPd(sd), Pt(t), and Pr(r ) are ana-
lyzed in the same way with the resulttd,`51.258,
t t,`51.405, andt r ,`51.588, respectively. All exponents ar

FIG. 1. The probability distributionP(s) for different system
sizes. The curves forL,4096 are shifted in the downward direc
tion.

FIG. 2. Determination of the exponentt using the extrapolation
@Eq. ~8!#.
n

-

slightly larger than those obtained from earlier simulatio
by Manna who considered smaller system sizes and had
statistics@6#.

However, these values of the exponents are not very
curate. Namely, a crucial point in this analysis is the ext
sion of the fit region in each distributionPs(s,L). Changing
it, slightly different exponents are obtained. This uncertai
in the determination of the exponentst(L) can be estimated
to be at least of the order of60.01. Taking then the propa
gation of these errors into account we can estimate the
certainty in the determination of the extrapolated valuet` to
be of the order of60.06 which is mainly due to the larg
distance of the measured values from the vertical axis~see
Fig. 2!. Thus it is in principle not possible to obtain th
exponents of the BTW model with high accuracy by a sim
extrapolation of the exponents via Eq.~8!.

However, it is possible to improve the determination
the exponents not by using Eq.~8! for an extrapolation but
for a direct determination oft` . Consider for this purpose
two probability distributionsP(s,L1) and P(s,L2) corre-
sponding to different system sizes withL1.L2. If Eq. ~8!
describes the finite-size behavior of the exponentsts cor-
rectly, the probability distribution@Eq. ~4!# for a given sys-
tem sizeL behaves as

P~s,L !;s2ts,`sconst/lnL. ~9!

Thus, the exponentts,` can be determined directly by
power-law fit of the functionH(s,L1 ,L2) which is defined as

H~s,L1 ,L2!5
P~s,L1!

lnL1

P~s,L2!
lnL2

;s2ts,`~ lnL12 lnL2!. ~10!

In Fig. 3,H(s,L1 ,L2) is plotted for various system size
L1 andL2. A nice property of this function is that in contras
to the probability distribution the cutoff of the power-la
behavior at large values ofs is now very abrupt. We apply
this analysis to all four distributions and the resulting exp
nents are listed in Table I. The values of the expone
ts,` , t t,` , and t r ,` ~except for the caseL25128,
L15256) fluctuate around their mean values given
ts,`51.29360.009, t t,`51.48060.011, and t r ,`51.665

FIG. 3. The functionH(s,L1 ,L2) for different pairsL1 and
L2. The curves are shifted with increasing system sizes in the do
ward direction. The solid lines correspond to a power-law fit. T
obtained values of the exponentts are listed in Table I.
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55 4097NUMERICAL DETERMINATION OF THE AVALANCHE . . .
60.013. Only the exponenttd,` displays a significantL de-
pendence. A possible origin of thisL dependence is that Eq
~8! does not describe correctly the finite-size behavior oftd
and that one has to add corrections to it. However, the d
suggest that this additionalL dependence vanishes for larg
system sizes and therefore the exponent saturates in th
cinity of td,`'1.33. Note that the mentioned error bars d
scribe only the statistical error. Because of the system
errors, the real error bars are slightly larger.

IV. DISCUSSION

Despite their different toppling rules it is supposed th
the BTW model, Zhang’s model@13#, and Manna’s two-state
model @14# belong to the same universality class; i.e., th
should be characterized by the same exponents. Pietro
and co-workers@11# addressed this question by a renorm
ization group approach and found that the BTW model a
Manna’s two-state model belong to the same universa
class. Different results were obtained by Ben-Hur and Bih
@10# who found different values for the two models.

In Table II we compare our results with the exponents
the Zhang and the two-state model obtained from recen
vestigations on comparable lattice sites@15#. Within the error
bars the BTW and Zhang models display the same ex
nents. The differences of the exponentstd and t r of the
BTW and Manna’s models cannot be explained by the e
bars and thus we conclude that both models do not belon
the same universality class. But it is remarkable that b
models display nearly the same duration exponentt t and
especially thatt t'

3
2. We assume that the valuet t5

3
2 is a

common feature of many sandpile models caused by an a
ogy of the avalanche propagation and a random walk, wh
we will discuss now.

The number of critical sites,n(t), at a given update~time!
step t can be considered as a random walker. Starting w
n(t50)51 the avalanche performs a random wa
n(t50)→n(t51)→n(t52)→••• with the transition prob-

TABLE I. Values of the exponentsts , td , t t , andt r for dif-
ferent pairs of system sizesL.

L1 ,L2 ts,` td,` t t,` t r ,`

128,256 1.293 1.253 1.486 1.183
256,512 1.281 1.287 1.464 1.665
512,1024 1.305 1.328 1.487 1.648
1024,2048 1.286 1.330 1.479 1.684
2048,4096 1.298 1.331 1.483 1.661

TABLE II. Values of the exponentsts , td , t t , andt r for the
BTW model, Zhang’s model, and Manna’s two-state model. B
cause of the finite curvature of the probability distribution, the d
ration exponentt t of the Zhang model cannot be determined in t
usual way@15#.

Model ts td t t t r

BTW 1.293 1.330 1.480 1.665
Zhang 1.282 1.338 1.682
Manna 1.275 1.373 1.493 1.743
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abilities p(n,n8). The avalanche ceases to exist if the ra
dom walk returns to the origin (n50). In the simplest case
the transition probabilities are homogeneo
p(n,n8)5p(n2n8), symmetricp(Dn)5p(2Dn), and the
random numbersDn are uncorrelated. Then the avalanc
probability distributionPt(t) is given by the probability
P first return(t) that a random walker with initial value
n(t50)51, with certain transition probabilities for increas
ing, decreasing, and maintainingn, returns for the first time
to its starting point int steps, which scales as@16#

P first return~ t !;t23/2. ~11!

Certain sandpile models are solved by an exact mappin
the avalanche propagation onto a simple random w
@17,18#.

In Fig. 4 we present the number of critical sites vs upd
steps of a certain avalanche of the BTW model. The pr
ability distributionp(Dn) and the corresponding correlatio
function

C~Dt !5
^Dn~ t !Dn~ t1Dt !&

^Dn2&
~12!

are shown in Fig. 5. The probability distributionp(Dn) has
to be symmetric in order to make sure that the random w
is recurrent; i.e., the probability that it ever returns to t
origin is 1 @16#. The distribution displays asymmetries on
for finite system sizes. A detailed analysis~not shown! yields
that the third central moment of the distributionp(Dn) tends
to zero with diverging system sizeL, indicating that
pL→`(Dn) is symmetric.

The correlation functionC(Dt) is sharply peaked a
Dt50 but there are small oscillations for small values
Dt. Therefore, the second requirement for Eq.~11! to be
valid, uncorrelated stepsDn, is only fulfilled approximately.
This oscillating behavior is caused by the used parallel
date process. Since toppling occurs at a given time ste
one sublattice only, the update algorithm switches in sequ
tial time steps between the two sublattices. The alterna
correlation function indicates that the correlations within o

-
-

FIG. 4. The avalanche propagation as a random walk. The n
ber of critical sitesn(t) is plotted against the update~time! steps for
a certain avalanche of durationt5289. Starting fromn(t50)51
the avalanche stops if the random walker returns to the origin
the first time.
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sublattice differs from the correlation between the two s
lattices. Thus, compared to the exactly solved sandpile m
els @17,18# where the correlation functions are simply give
by ad function the correlations of the BTW model are mo
complicated. But since these oscillations at smallDt have
small amplitudes, we suggest that the avalanche propaga
may be described as a random walk and that the expone
the duration ist t5

3
2.

Scaling relations for the exponentsts , td , t t , andt r can
be obtained if one assumes that the size, area, duration
radius scale as a power of each other, for instance,

t;r g tr, ~13!

for the durationt of an avalanche and its radiusr . The rela-
tion Pt(t)dt5Pr(r )dr for the corresponding distribution
functions leads to the scaling relation

g tr5
t r21

t t21
. ~14!

The exponentsgdr , g rs , gsd , etc., are defined in the sam
way. The exponentg tr is usually identified with the dynami
cal exponentz and using a momentum-space analysis of
corresponding Langevin equations Dı´az-Guilera showed tha
the dynamical exponent of the BTW and Zhang’s models
given byz5(d12)/3 @19#. On the other hand, one conclud
from the compactness of the avalanche clusters
gdr52. Thus one gets two scaling relations for the exp
nentstd , t r , andt t and using the result thatt t5

3
2 the ex-

ponents of the probability distribution of the radius and t
area are given byt r5

5
3 andtd5

4
3. These values are in goo

agreement with our numerical results and we would sugg
that they are the exact exponents of the BTW model.

Majumdar and Dhar@7# assumed that the size and the ar
of an avalanche fulfill the relation

s;sdnc , ~15!

FIG. 5. The probability distributionp(Dn) ~see inset! and the
correlationsC(Dt) for different system sizes (L564,128,256).
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wherenc is the number of topplings at the site initiating th
avalanche. If this equation holds, the exponentsts and td
have to fulfill the relationts5221/td . Using td5

4
3 from

above we obtaints5
5
4 which is well outside the error bars o

our numerical result,ts51.293. Thus we conclude that th
assumed relation~15! does not describe the real scaling b
havior.

Because of the lack of a scaling relation which conne
ts with the other exponents, the exact value of the expon
ts is still unknown. Even a numerical determination of th
exponentgsd yields useless results. The relation which d
fines gsd implies the assumption that the conditional pro
ability distribution p(susd) is strongly peaked so that th
expectation valueE(susd) scales with the areasd . Measure-
ments of the conditional probabilities show that this is n
the case forp(susd) ~see Fig. 6!. The distribution displays an
asymmetric shape which violates the above assumptions

A similar analysis of Manna’s two-state model yielde
that the dynamical exponent is given byz' 3

2, resulting in
t r5

7
4, td5

11
8 @15#. The BTW model and the two-state mod

belong to different universality classes.

V. CONCLUSIONS

We studied numerically the dynamical properties of t
BTW model on a two-dimensional square lattice and m
sured for large system sizes (L<4096) the avalanche prob
ability distributions. We introduced a new analysis to min
mize the finite-size effects and determined the avalan
exponents with an improved accuracy. Our numerical res
are consistent with the valuest t5

3
2, t r5

5
3, andtd5

4
3 which

we consider to be the exact exponents of the BTW mod
We discussed the possibility that these values are cause
an analogy of the avalanche propagation and a random w
process. Further work has to be done to check this assu
tion. Recently, Ivashkevich@12# improved the renormaliza
tion group approach for sandpile models proposed by
etroneroet al. @11#. Both calculations yield the exponen
td'1.25, significantly smaller than our numerical estimat
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FIG. 6. The conditional probability distributionp(susd). The
arrow marks the corresponding expectation value.
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