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Numerical determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model
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(Received 17 December 1996

We consider the Bak-Tang-Wiesenfeld sandpile model on a two-dimensional square lattice of lattice sizes up
to L=4096. A detailed analysis of the probability distribution of the size, area, duration, and radius of the
avalanches will be given. To increase the accuracy of the determination of the avalanche exponents we
introduce a new method for analyzing the data which reduces the finite-size effects of the measurements. The
exponents of the avalanche distributions differ slightly from previous measurements and estimates obtained
from a renormalization group approa¢i$1063-651X97)09604-9

PACS numbe(s): 05.40:+j

I. INTRODUCTION Il. MODEL

We consider the two-dimensional BTW model on a
) A ) . square lattice of sizeLXL in which integer variables
concept of self-organized criticalitySOQ and realized it h, ;=0 represent local heights. One perturbs the system by

with the so-called “sandpile model'(BTW mode). The . . . :
steady state dynamics of the system is characterized by thaeddlng particles at a randomly chosen $ifg according to

probability distribu'tion.s for the occurrence of relaxat'ic.)n hy j—hi j+1 with random (i, ). 1)
clusters of a certain size, area, duration, etc. In the critical

steady state these probability distributions exhibit power-lawa site is called unstable if the corresponding height ex-

behavior. Using the concept of "Abelian sandpile models” ceeds a critical valué, i.e., if h; j=h.. Without loss of

[2] it is possible to calculate the static properties of thegenerality, we takéi,=4 throughout this work. An unstable

model exactly, e.g., the height probabilities, height correlasite relaxes, its value is decreased by 4, and the neighboring
tions, number of steady state configurations, ¢&-5.  sjtes are increased by one unit, i.e.,

However, the dynamical properties of the model, i.e., the

Bak, Tang, and WiesenfeldTW) [1] introduced the

exponents of the probability distributions, are not known ex- hi j—h; ;— 4, (2)
actly. Numerical simulations yield different values of the ex-
ponents depending on the considered system size and the hicgjer—hicgjoat 1, (3

used method of analyzing the dataee, for instance,
[6—10Q)). Recently Pietroneret al. [11] introduced a renor- where the update is done in parallel. We assume open bound-
malization scheme which allowed them to estimate the avaary conditions with heights at the boundary fixed to zero.
lanche exponents. An improvement of this renormalization System sizes fromL. =64 to L=4096 are investigated.
scheme was given by Ivashkevi¢h2] who obtained com-  Starting with a lattice of randomly distributed heigrts
parable results. €{0,1,2,3 the system is perturbed according to Et). and
We investigate the original Bak-Tang-Wiesenfeld modelDhar’s “burning algorithm” is applied in order to check if
on large lattice sizesl(<4096) and measured the probabil- the system has reached the critical steady $&teThen we
ity distributions. Since the numerical investigations of thestart the actual measurements. All measurements are aver-
BTW model by Manna[6] it is known that the obtained aged over at least £Gonzero avalanches except of the case
values of the exponents are affected by the finite size of the =4096 where only % 10° measurements have been per-
system. These finite-size effects have to be taken into adormed. We studied four different properties characterizing
count in order to get the “real” exponents. This has beenan avalanche. In the following we use the same notation as
done by extrapolationl(— ) from data obtained for differ- Majumdar and Dhaf7]. The total number of toppling events
entL [6]. We could improve this method and are now able tojs called the sizes of an avalanche. The number of distinct
measure the exponents of the infinite system directly, thugoppled lattice sites is denoted Isy. Because a particular
avoiding any extrapolation. In this way the accuracy of thejattice site may topple several times, the number of toppling
obtained exponents is increased significantly. We also adevents exceeds the number of distinct toppled lattice sites,
dress the question whether the BTW model and the relatege., s=s,. The durationt of an avalanche is equal to the
sandpile models of Zhar{d.3] and Mannd 14] belong to the  number of update sweeps needed until all sites are stable
same universality class. Finally, we discuss the assumptiofgain. The linear size of an avalanahés measured via the
that the avalanche propagation can be described as a randggdlius of gyration of the avalanche cluster. In the critical
walk. steady state the corresponding probability distributions
should obey power-law behavior characterized by exponents
Ts, Td» Tt, and 7, according to
*Electronic address: sven@thp.uni-duisburg.de
TElectronic address: usadel@thp.uni-duisburg.de Ps(s)~s™ s, (4)
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FIG. 1. The probability distributioriP(s) for different system
sizes. The curves fdc <4096 are shifted in the downward direc-
tion.

Pa(sq)~Sq ™, )
Py(t)~t™7, (6)
P.(r)~r—". (7)

[ll. SIMULATIONS AND RESULTS

Figure 1 displays the obtained results for the distribution

P.(s) for different system sizes. A power-law fit to the
straight portion of these curves yields the exponen(t).
Figure 2 shows a plot of the exponentgL) vs 1/InL. It is
seen that fol.=128 the exponents obey the finite-size be-
havior

const

To(L) = 75— TR

8
as suggested already by Manf@. The extrapolation to
L—o yields the value of the exponent.=1.247. The
probability distributionsP4(sy), Pi(t), and P,(r) are ana-
lyzed in the same way with the resulty..=1.258,
Tt »=1.405, andr, ..=1.588, respectively. All exponents are
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FIG. 2. Determination of the exponentusing the extrapolation
[Eq. (8)].
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FIG. 3. The functionH(s,L4,L,) for different pairsL, and
L,. The curves are shifted with increasing system sizes in the down-
ward direction. The solid lines correspond to a power-law fit. The
obtained values of the exponent are listed in Table I.

slightly larger than those obtained from earlier simulations
by Manna who considered smaller system sizes and had less
statistics[6].

However, these values of the exponents are not very ac-
curate. Namely, a crucial point in this analysis is the exten-
sion of the fit region in each distributioRg(s,L). Changing
it, slightly different exponents are obtained. This uncertainty
in the determination of the exponentél) can be estimated
to be at least of the order of 0.01. Taking then the propa-
gation of these errors into account we can estimate the un-
certainty in the determination of the extrapolated vatydo
be of the order of+0.06 which is mainly due to the large
distance of the measured values from the vertical s
Fig. 2. Thus it is in principle not possible to obtain the
exponents of the BTW model with high accuracy by a simple
extrapolation of the exponents via E®).

However, it is possible to improve the determination of
the exponents not by using E) for an extrapolation but
for a direct determination of,,. Consider for this purpose
two probability distributionsP(s,L;) and P(s,L,) corre-
sponding to different system sizes with>L,. If Eq. (8)
describes the finite-size behavior of the exponentzor-
rectly, the probability distributiofEq. (4)] for a given sys-
tem sizeL behaves as

P(S,L)strs’msconstllﬂ__ (9)
Thus, the exponents.. can be determined directly by a
power-law fit of the functioH(s,L,L5) which is defined as

P(S,Ll)lnLl

H(s,L1,L5) :W ~g~ Ts(inbyinka),
=2

(10

In Fig. 3,H(s,L,L>) is plotted for various system sizes
L, andL,. A nice property of this function is that in contrast
to the probability distribution the cutoff of the power-law
behavior at large values &fis now very abrupt. We apply
this analysis to all four distributions and the resulting expo-
nents are listed in Table I. The values of the exponents
Tsw, Ttw, and 7. (except for the casel,=128,
L,=256) fluctuate around their mean values given by
Ts=1.293-0.009, 7 .=1.480+0.011, and r, ..=1.665
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TABLE |. Values of the exponents, 4, 7, and 7, for dif- 30
ferent pairs of system sizes . 1=256
Li,Ls Ts,00 Td, o Tt,0 Tr,
128,256 1.293 1.253 1.486 1.183 2 |
256,512 1.281 1.287 1.464 1.665 =
512,1024 1.305 1.328 1.487 1.648 =
1024,2048 1.286 1.330 1.479 1.684 10 b
2048,4096 1.298 1.331 1.483 1.661
+0.013. Only the exponenty ., displays a significant de- 0 20 00

pendence. A possible origin of thisdependence is that Eq. u}fgate steps (time)
(8) does not describe correctly the finite-size behavior pf
and that one has to add corrections to it. However, the data FIG. 4. The avalanche propagation as a random walk. The num-
suggest that this addition&l dependence vanishes for large ber of critical sitesi(t) is plotted against the updatéme) steps for
system sizes and therefore the exponent saturates in the d-certain avalanche of duratidr-289. Starting frorn(t=0)=1
cinity of 74 ..~1.33. Note that the mentioned error bars de-the avalanche stops if the random walker returns to the origin for
scribe only the statistical error. Because of the systematithe first time.
errors, the real error bars are slightly larger.
abilities p(n,n"). The avalanche ceases to exist if the ran-
IV. DISCUSSION dom walk returns to the originn(=0). In the simplest case
the transition probabilities are homogeneous
Despite their different toppling rules it is supposed thatp(n,n’)=p(n—n’), symmetricp(An)=p(—An), and the
the BTW model, Zhang’'s modgl13], and Manna’s two-state random numberg\n are uncorrelated. Then the avalanche
model[14] belong to the same universality class; i.e., theyprobability distribution P,(t) is given by the probability
should be characterized by the same exponents. Pletrone|:ofirst eun{t) that a random walker with initial value
and co-worker411] addressed this question by a renormal-n(t=0)=1, with certain transition probabilities for increas-

ization group approach and found that the BTW model andng, decreasing, and maintainimg returns for the first time
Manna’s two-state model belong to the same universality, jts starting point irt steps, which scales #$6]

class. Different results were obtained by Ben-Hur and Biham
[10] who found different values for the two models. P firstreurf ) ~t %2, (11)
In Table Il we compare our results with the exponents of
the Zhang and the two-state model obtained from recent inCertain sandpile models are solved by an exact mapping of
vestigations on comparable lattice sif¢§]. Within the error  the avalanche propagation onto a simple random walk
bars the BTW and Zhang models display the same expd-17,1§.
nents. The differences of the exponents and 7, of the In Fig. 4 we present the number of critical sites vs update
BTW and Manna’s models cannot be explained by the errosteps of a certain avalanche of the BTW model. The prob-
bars and thus we conclude that both models do not belong tability distributionp(An) and the corresponding correlation
the same universality class. But it is remarkable that bothHunction
models display nearly the same duration expongnénd
especially thatr,~2. We assume that the valug=3 is a (An(t)An(t+At))
common feature of many sandpile models caused by an anal- C(AD)= (An?)
ogy of the avalanche propagation and a random walk, which
we will discuss now. are shown in Fig. 5. The probability distributigg{An) has
The number of critical sites)(t), at a given updatéime)  to be symmetric in order to make sure that the random walk
stept can be considered as a random walker. Starting witlis recurrent; i.e., the probability that it ever returns to the
n(t=0)=1 the avalanche performs a random walkorigin is 1[16]. The distribution displays asymmetries only
n(t=0)—n(t=1)—n(t=2)— - - - with the transition prob- for finite system sizes. A detailed analy&mt shown yields
that the third central moment of the distributipAn) tends
TABLE Il. Values of the exponents, 74, 7, andr, forthe  to zero with diverging system sizé&, indicating that
BTW model, Zhang’'s model, and Manna’s two-state model. Be'pLHw(An) is symmetric.

cause of the finite curvature of the probability distribution, the du-' ~The correlation functionC(At) is sharply peaked at
ration exponent, of the Zhang model cannot be determined in the At=0 but there are small oscillations for small values of

usual way{ 15} At. Therefore, the second requirement for Efjl) to be
valid, uncorrelated steptn, is only fulfilled approximately.

(12

Model T T mt T This oscillating behavior is caused by the used parallel up-
BTW 1.293 1.330 1.480 1.665 date process. Since toppling occurs at a given time step in
Zhang 1.282 1.338 1.682 one sublattice only, the update algorithm switches in sequen-
Manna 1.275 1.373 1.493 1.743 tial time steps between the two sublattices. The alternating

correlation function indicates that the correlations within one
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& wheren,, is the number of topplings at the site initiating the
FIG. 5. The probability distributiop(An) (see insetand the ~ avalanche. If this equation holds, the exponentsand 7q
correlationsC(At) for different system sizes (= 64,128,256). have to fulfill the relationrs=2—1/r4. Using 74=3 from
above we obtairrs= 2 which is well outside the error bars of
sublattice differs from the correlation between the two sub-our numerical resultys=1.293. Thus we conclude that the
lattices. Thus, compared to the exactly solved sandpile modassumed relatioil5) does not describe the real scaling be-
els[17,18 where the correlation functions are simply given havior.
by a é function the correlations of the BTW model are more  Because of the lack of a scaling relation which connects
complicated. But since these oscillations at smlhave 75 with the other exponents, the exact value of the exponent
small amplitudes, we suggest that the avalanche propagation is still unknown. Even a numerical determination of the
may be described as a random walk and that the exponent ekponentysy yields useless results. The relation which de-
the duration isr,=3. fines ysq implies the assumption that the conditional prob-
Scaling relations for the exponents, 74, 7, andr, can  ability distribution p(s|sy) is strongly peaked so that the
be obtained if one assumes that the size, area, duration, aedpectation valu€(s|sy) scales with the aresy. Measure-
radius scale as a power of each other, for instance, ments of the conditional probabilities show that this is not
the case fop(s|sy) (see Fig. 6. The distribution displays an
asymmetric shape which violates the above assumptions.
t~rr, (13 A similar analysis of Manna’s two-state model yielded
that the dynamical exponent is given by 2, resulting in
T.=1, 7q= 3 [15]. The BTW model and the two-state model

for the durationt of an avalanche and its radius The rela- belong to different universality classes.

tion P,(t)dt=P,(r)dr for the corresponding distribution
functions leads to the scaling relation

V. CONCLUSIONS

1 (14) We studied numerically the dynamical properties of the
Y™ r—1° BTW model on a two-dimensional square lattice and mea-
sured for large system sizek£€4096) the avalanche prob-
ability distributions. We introduced a new analysis to mini-
The exponentsyy,, s, ¥sd, €tC., are defined in the same mize the finite-size effects and determined the avalanche
way. The exponeny,, is usually identified with the dynami- exponents with an improved accuracy. Our numerical results
cal exponent and using a momentum-space analysis of theare consistent with the values= 2, .= 2, and 4= 3 which
corresponding Langevin equationsa2tGuilera showed that we consider to be the exact exponents of the BTW model.
the dynamical exponent of the BTW and Zhang's models iSVe discussed the possibility that these values are caused by
given byz=(d+2)/3[19]. On the other hand, one concludes an analogy of the avalanche propagation and a random walk
from the compactness of the avalanche clusters tharocess. Further work has to be done to check this assump-
var=2. Thus one gets two scaling relations for the expo-tion. Recently, lvashkevich12] improved the renormaliza-
nentsty, 7., and 7, and using the result thai=3 the ex-  tion group approach for sandpile models proposed by Pi-
ponents of the probability distribution of the radius and theetroneroet al. [11]. Both calculations yield the exponent
area are given by, =3 and74=3. These values are in good 74~ 1.25, significantly smaller than our numerical estimates.
agreement with our numerical results and we would suggest
that they are the exact exponents of the BTW model.
Majumdar and Dhaf7] assumed that the size and the area ACKNOWLEDGMENTS
of an avalanche fulfill the relation
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